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This paper presents a general formulation for simulating the singular stress field at
the vicinity of the crack-tip for linear fracture mechanics problems, based on the edge-
based smoothed finite element method (ES-FEM) settings. This novel “singular ES-
FEM” makes use of the unique feature offered by the ES-FEM that only the assumed
displacement values (not the derivatives) are required to compute the stiffness matrix
of the discretized system. The present singular ES-FEM method uses a basic mesh of
linear triangular elements and a layer of novel “five-noded crack-tip elements” sharing
the crack-tip node. The five-noded crack-tip element has one additional node on each
of the edges connected to the crack-tip, and the locations of the “edge-node” can be
arbitrary. A number of examples are analyzed and the results demonstrate that the
present singular ES-FEM is generally softer and much more accurate than the exist-
ing FEM. The stress intensity factors obtained using the singular ES-FEM are very
stable for different area-integration paths designed around the crack-tip. The present
singular ES-FEM is found an excellent alternative to the standard FEM for fracture
problems.
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element method, mixed mode crack problems.
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1. Introduction

The strain smoothing technique was used for stabilizing the solutions of the nodal
integrated meshfree methods [Chen et al. (2000)], and it was also applied in the
natural element method [Yoo et al. (2004)]. The strain smoothing technique was
later implemented to the finite element method (FEM) settings, and the smoothed
finite element method (SFEM) was developed using cell-based smoothing domains
(SDs) created by further dividing the elements [Liu et al. (2007a)]. Such a cell-based
smoothed FEM (or CS-FEM) has a number of important properties [Liu et al.
(2007b)] and works naturally well for heavily distorted elements and the general
n-sided polygonal elements [Dai et al. (2007)]. A node-based smoothed finite element
method (NS-FEM) [Liu et al. (2009c)] was also proposed using SDs constructed
based on nodes in FEM settings. When triangular elements are used, the NS-FEM
gives the same results as the node-based uniform strain elements [Dohrmann et al.
(2000)] or the LC-PIM [Liu et al. (2005)] using linear shape functions for interpo-
lation. Similar to other nodal integrated methods [Puso and Solberg (2006); Puso
et al. 2008; Nagashima (1999)]; NS-FEM suffers from the temporal instability due
to its “overly soft” feature rooted at the use of a relatively small number of SDs in
relation to the nodes [Liu (2008)]. Liu et al. [2009a] formulated then the edge-based
smoothed finite element method (ES-FEM) to eliminate this temporal instability.
The ES-FEM works very well with triangular elements and exhibits super conver-
gence properties, in addition to its ultra accuracy: it can be more accurate even
compared to the FEM using quadrilateral elements with the same set of nodes. The
ES-FEM was found computationally very efficient [Chen et al. (2009)], and known
as the “star performer” among all the linear numerical models [Liu (2009)]. Most
importantly, in the framework of ES-FEM formulation, stiffness matrix calculation
requires only evaluating the shape functions values (and not the derivatives) on the
boundaries of the strain SDs associated with the element edges. Making use of this
significant property, displacement fields can enriched with a desired order of

√
r for

linear fracture problems [Liu et al. (2009b)] using the simple and “nonmapping”
point interpolation method (PIM) [Liu (2009)]. As a result, a proper singular stress
field can be perfectly produced in the vicinity of the crack-tip, without using any
mapping procedure.

In this paper, we provide a general formulation for fracture problems based
on the ES-FEM approach using a base mesh of linear triangular elements that
can be automatically generated for complicated geometries. In the present singular
ES-FEM, we use one layer of “five-noded crack-tip elements” specially designed for
simulating the stress and strain singularity near the crack-tip. The five-noded crack-
tip element has one additional node on each of the edges connected to the crack-tip,
and the locations of the “edge-node” can be arbitrary. Therefore, the formulation
is quite general and straightforward. To evaluate the stress intensity factors, we use
the interaction integral method widely used in the FEM. Numerical examples will
be presented to examine the performance of the singular ES-FEM, in comparison
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with other existing FEM models. The numerical results in terms of strain energy
and stress intensity factors have shown clearly that the present singular ES-FEM
method is much more accurate than the standard FEM and even the ES-FEM with
the same mesh. Moreover, the singular ES-FEM works very well with the interaction
integral method and produces stable and path-independent results in terms of stress
intensity factors for the mixed-mode fracture problems.

This paper is outlined as follows. In Sec. 2, the idea of the singular ES-FEM
is introduced and a general procedure for creating the shape functions with proper
singularity near the crack-tip is proposed. We then present the approach to compute
the stiffness matrix, especially for the layer of the five-noded crack-tip elements. In
Sec. 3, the accuracy of the present method is analyzed using numerical examples
and comparisons are made between our singular ES-FEM and standard ES-FEM-T3
and FEM-T3. Finally, some conclusions are drawn in Sec. 4.

2. A General Formulation of Singular ES-FEM

2.1. Reproducing stress singularity at the crack-tip

2.1.1. Displacement interpolation along the element edge

When a linear fracture mechanics problem is simulated using a numerical approach,
the singular stress field near the crack-tip should be properly simulated. In the
FEM, the most widely used technique to simulate this kind of stress singularity is
the so-called (quadratic) six-node crack-tip element in which the mid-edge nodes
are shifted by a quarter edge-lengths towards the crack-tip. The singularity is then
achieved nicely by the well-known isoparametric mapping procedure [Liu and Quek
(2003); Zienkiewicz and Taylor (2007)].

In the present singular ES-FEM method, we use the simple “nonmapping” PIM
method [Liu et al. (2009)] for displacement field construction, because only the
shape function values (not the derivatives) are required in the ES-FEM formulation
[Liu et al. (2009a)]. Making use of this important feature of the ES-FEM, the stress
singularity at the crack-tip can be easily enriched with extra basis functions of
proper fractional order polynomials. Figure 1 shows a singular ES-FEM model for
a fracture problem with a horizontal opening crack, where we add in a node on
each edge of the triangular elements connected to the crack-tip node, as shown in
Fig. 2(a). The location of the added intermediate node can be in general at any
point on the edge, as shown in Fig. 2(b). The displacement field, for example, the
component u, at any point of interest on an edge directly connected to the crack-tip
can be approximated using:

u = c0 + c1r + c2

√
r, (1)

where r is the radial coordinate originated at the crack-tip (node 1), and ci (i =
0, 1, 2) are the constants yet to be determined. Clearly, the assumed displacement
using Eq. (1) is at least linearly complete. Using Eq. (1), the displacements at node



March 31, 2010 9:2 WSPC/0219-8762 196-IJCM 00213

194 G. R. Liu et al.

Fig. 1. An ES-FEM model: Triangular elements mesh (solid lines), quadrilateral smoothing
domains (dashed lines) for a fracture problem with an opening crack.

(a) An additional node is added on each (b) coordinate for an edge connected
edge of the triangular elements to the crack-tip

connected to the crack-tip.

Fig. 2. Node arrangement near the crack-tip. Dash lines show the boundary of a smoothing domain
for an edge directly connected to the crack-tip node.

1, 2, and 3 can be expressed as:

u1 = c0; (r = 0 at node 1), (2)

u2 = c0 + c1λl + c2

√
λl; (r = λl at node 2), (3)

u3 = c0 + c1l + c2

√
l; (r = l at node 3), (4)
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where ui (i = 1, 2, 3) are the nodal displacements, l is the length of the element edge,
and λ ∈ (0 1) controls the location of node 2. Solving this simultaneous system of
three Eqs. (2)–(4) for ci, we shall have:




c0 = u1,

c1 =
1
λl

[(
−1 +

(1 − λ)
√

λl√
λl − λ

√
l

)
u1+

(
1 −

√
λl√

λl − λ
√

l

)
u2 +

λ
√

λl√
λl − λ

√
l
u3

]
,

c2 =
1√

λl − λ
√

l
[(λ − 1)u1 + u2 − λu3].

(5)

After substituting ci (i = 1, 2, 3) back to Eq. (1), we obtain:

u =




1 +
r

λl

(
−1 +

(1 − λ)
√

λl√
λl − λ

√
l

)
+

√
r√

λl − λ
√

l
(λ − 1)

︸ ︷︷ ︸
φ1

r

λl

(
1 −

√
λl√

λl − λ
√

l

)
+

√
r√

λl − λ
√

l︸ ︷︷ ︸
φ2

r

λl

(
λ
√

λl√
λl − λ

√
l

)
− λ

√
r√

λl − λ
√

l︸ ︷︷ ︸
φ3




T




u1

u2

u3


 , (6)

where φi (i = 1, 2, 3) are the basic nodal shape functions for these three nodes on
the edge connected to the crack-tip that can be written in the following row-matrix
form:

Φ =




1 +
r

λl

(
−1 +

(1 − λ)
√

λl√
λl − λ

√
l

)
+

√
r√

λl − λ
√

l
(λ − 1)

︸ ︷︷ ︸
φ1

r

λl

(
1 −

√
λl√

λl − λ
√

l

)
+

√
r√

λl − λ
√

l︸ ︷︷ ︸
φ2

r

λl

(
λ
√

λl√
λl − λ

√
l

)
− λ

√
r√

λl − λ
√

l︸ ︷︷ ︸
φ3




T

, (7)
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where 


φ1 = 1 +
r

λl

(
−1 +

(1 − λ)
√

λl√
λl − λ

√
l

)
+

√
r√

λl − λ
√

l
(λ − 1),

φ2 =
r

λl

(
1 −

√
λl√

λl − λ
√

l

)
+

√
r√

λl − λ
√

l
,

φ3 =
r

λl

(
λ
√

λl√
λl − λ

√
l

)
− λ

√
r√

λl − λ
√

l
.

(8)

It is clear that the shape functions are (complete) linear in r and “enriched”
with

√
r that is capable of producing a strain (hence stress) singularity field of an

order of 1/2 near the crack-tip, because the strain is evaluated from the derivatives
of the assumed displacements. Note also that in our formulation, the intermediate
edge-node can be at any position on the edge controlled by factor λ, which is very
general and different from the usual FEM crack-tip elements where the intermediate
nodes are located at a quarter of lengths to the crack-tip. Moreover, the usual FEM
crack-tip element achieves the singularity by coordinate mapping, while the singular
ES-FEM achieves the singularity via direct interpolation with a proper fractional
order basis term and no mapping is needed.

2.1.2. Displacement interpolation within a crack-tip element

In the present ES-FEM, we use a base mesh of three-node linear triangle elements
for areas without singularity, and one layer of the specially designed singular five-
noded triangular elements containing the crack-tip to produce the desired stress
singularity behavior at the crack-tip, as shown in Fig. 3. The same procedure of

Fig. 3. Two five-node elements connected to the crack-tip node 1.
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producing the stress singularity of an order of 1/2 near the crack-tip along the
element edge described in Sec. 2.1.1 can be properly developed within a crack-tip
element. The procedure follows that presented in Liu et al. [2009b], but using the
basic nodal shape functions for nodes at an edge given in Eq. (8).

We first assume that in the radial directions originated from the crack-tip, the
displacements vary in the same fashion as given in Eq. (1). In the tangential direc-
tion, however, it is assumed to vary linearly. This assumption ensures the compat-
ibility along the edges between the three-node linear triangular elements and the
five-node crack-tip elements. Figure 3 shows two five-node elements, parts of which
form one edge-based SD. The points D1 and B1 in this figure are, respectively, the
midpoints of lines 2–3 and 4–5. The displacements at these two points can be evalu-
ated simply by averaging (because of linear variation assumption on the tangential
direction):

uB1 =
1
2
(u4 + u5), (9)

uD1 =
1
2
(u2 + u3). (10)

At any point on the line 1−B1−D1 displacement is then evaluated using the shape
functions for edges given in Eq. (8):

u = u1φ1 + uB1φ2 + uD1φ3. (11)

Substituting Eqs. (9) and (10) into Eq. (11), we have:

u = u1φ1 +
1
2
(u4 + u5)φ2 +

1
2
(u2 + u3)φ3. (12)

Hence, the interpolation at any point on line 1−B1 −D1, can be given as follows:

u = u1φ1 +
1
2
φ3u2 +

1
2
φ3u3 +

1
2
φ2u4 +

1
2
φ2u5. (13)

Similarly, at any point on line 1 − γ − β (see, Fig. 3), the displacement can be
calculated as

u = u1φ1 + uγφ2 + uβφ3, (14)

where

uγ =
(

1 − lγ−4

l4−5

)
u4 +

lγ−4

l4−5
u5, (15)

uβ =
(

1 − lβ−2

l2−3

)
u2 +

lβ−2

l2−3
u3, (16)

in which li−j is the distance between points i and j. Because the simple fact that
lγ−4
l4−5

= lβ−2
l2−3

= α, we finally arrive at

u = φ1︸︷︷︸
N1

u1 + (1 − α)φ3︸ ︷︷ ︸
N2

u2 + αφ3︸︷︷︸
N3

u3 + (1 − α)φ2︸ ︷︷ ︸
N4

u4 + αφ2︸︷︷︸
N5

u5. (17)
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The general form of the nodal shape functions for the interpolation at any point
within the five-node crack-tip element can be written as:




N1 = 1 +
r

λl

(
−1 +

(1 − λ)
√

λl√
λl − λ

√
l

)
+

√
r√

λl − λ
√

l
(λ − 1),

N2 = (1 − α)

(
r

λl

(
λ
√

λl√
λl − λ

√
l

)
− λ

√
r√

λl − λ
√

l

)
,

N3 = α

(
r

λl

(
λ
√

λl√
λl − λ

√
l

)
− λ

√
r√

λl − λ
√

l

)
,

N4 = (1 − α)

(
r

λl

(
1 −

√
λl√

λl − λ
√

l

)
+

√
r√

λl − λ
√

l

)
,

N5 = α

(
r

λl

(
1 −

√
λl√

λl − λ
√

l

)
+

√
r√

λl − λ
√

l

)
.

(18)

Because in our singular ES-FEM, we do not need derivatives of shape functions,
Eq. (18) is all we need in computing the stiffness matrix for creating our numerical
model.

2.2. Strain smoothing domains associated with the edges

In order to calculate the stiffness matrix in the present ES-FEM, strain SDs are
constructed associated with the edges of each element. Each three-node triangular
elements are divided into three equal sub-triangular areas each of which has one
edge of the element as the base, and they all share the center of the element as
a vertex. Two such sub-triangular areas sharing with the same edge form a SD,
as shown in Fig. 4(a). For a five-node crack-tip element, however, we can increase
the number of sub-smoothing domains (S-SDs) associated with the edges directly
connected to the crack-tip node for better capturing the singularity field. Figure 4
shows three cases of one, two, and three S-SDs per edge for the five-node crack-tip
elements. The effects of the use of different numbers of S-SDs will be examined in
the example section.

2.3. Stiffness matrix evaluation

Based on the ES-FEM procedure [Liu et al. (2009a)], the entries of the global
stiffness matrix of the whole model can be calculated by

KIJ =
Ns∑
k=1

KIJ,k, (19)
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(a) One smoothing domain 1-C1-2-C2-1 (b) Two sub-smoothing domains: 1-B1-4-B2-1

for one edge 1-2 (SD = 1) and 4-B1-C1-2-C2-B2-4 for one

crack-tip edge 1-2 (S-SD = 2)

(c) Three sub-smoothing domains:

1-D1-E-D2-1, E-D1-B1-4-B2-D2-E,

4-B1-C1-2-C2-B2-4 for one

crack-tip edge (S-SD = 3)

Fig. 4. Division of the smoothing domain associated with edge 1-2 into smoothing domains. For
crack-tip edges, we may use SD = 1, 2, or 3. For other edges, we use SD = 1.

where K̄IJ is the IJ th entry of the global stiffness matrix and K̄IJ ,k is that of the
stiffness matrix of the kth SD, and Ns is the total number of SDs. K̄IJ ,k can also
be computed by [Liu et al. (2009a)]

KIJ ,k =
∫

As
k

B
T

I DBJdA, (20)

in which As
k is the strain smoothing area associated with edge k. The smoothed

strain matrix B̄T
I has the form of

BI(xk) =



bIx(xk) 0

0 bIy(xk)

bIy(xk) bIx(xk)


 , (21)
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where

bIh(xk) =
1

As
k

∫
Γs

k

NI(x)nk
h(x)dΓ; (h = x, y), (22)

in which NI is the shape functions obtained for the element housing x, Γs
k is the

boundary of the SD, and nk
h is the hth component of the outward normal vector on

the boundary Γs
k. Numerically, Eq. (22) can be calculated by

bIh(xk) =
1

As
k

M∑
i=1

Ngp∑
j=1

NI(xGP
i,j )wGP

i,j nk
ih; (h = x, y), (23)

where M is the number of (line) boundary segments of Γs
k, xGP

i,j is the Gaussian
point location on the ith boundary segment, wGP

i,j is the Gaussian weight associated
with the Gaussian point xGP

i,j , Ngp is the number of Gaussian points on the ith
boundary segment, and nk

ih is the hth component of the unit outward vector on the
ith boundary segment.

It should be noticed that for the boundary segments associated with the standard
three-node triangular elements, one Gaussian point at the midpoint of the (line)
boundary segment is sufficient, due to the linear interpolation used. For a five-node
crack-tip element, however, more Gaussian points should be used, because the shape
functions are no longer linear on the segment. In addition, for a five-node crack-
tip element each SD can be divided into more S-SDs, for instance S-SD1, S-SD2,
and S-SD3 shown in Fig. 4. In such a case, the SD’s boundary segments which
are directly connected to the crack-tip have been divided into more sub-segments
and integration should be evaluated along each sub-segment with more than one
Gauss points. For example, as shown in Fig. 4(c), the boundary segment 1−C1 has
been divided into three sub-segments 1−D1, D1 −B1, and B1 −C1, and boundary
segment 1 − C2 has also been divided into three sub-segments 1 − D2, D2 − B2,
and B2 −C2. In the numerical example section, we will show that the use of proper
number of subdivisions can improve the accuracy of the results.

2.4. J-integral and stress intensity factor evaluation

2.4.1. General formulations

Under the assumption of small displacement gradient, the standard J-integral for a
two-dimensional, planar, elastic solid including a sharp crack is defined in the form
of line-path integration by [Rice (1968)]:

J = −
∫

ΓJ

(
σij

∂ui

∂x1
− wδ1j

)
njdΓ, (24)

where ΓJ is an arbitrary line-path enclosing the crack-tip located at the origin of
the coordinate system as shown in Fig. 5(a), nj is the outward unit normal on ΓJ ,
σij the stress, ui the displacement vector referred to a Cartesian coordinate system,
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(a) (b)

(c)

Fig. 5. Typical types of closed paths around the crack-tip: (a) line-path; (b) area-path; (c) A
typical method to select elements around the crack-tip to form the area-path for the calculation
of the interaction integral.

and w the strain energy density. Theoretically, we know that J value is integration
path-independent. Numerically, however, we often observe path dependence.

To achieve better “numerically” path independency, we often use a so-called
area–path in lieu of the line-path for the integration. To obtain such an area–
path integration formula, the integrand in Eq. (24) is multiplied with a smoothing
weighting function q as [Li et al. (1985)]:

J = −
∫

ΓJ

(
σij

∂ui

∂x1
− wδ1j

)
njqdΓ. (25)

Consider a typical two-dimensional sharp-cracked body with an assumed closed
contour ΓJ around its crack-tip as shown in Fig. 5(b), where we have ΓJ = ΓJ1 ∪
Γ− ∪ ΓJ2 ∪ Γ+ . The area AJ is enclosed by line segments ΓJ1, Γ−, ΓJ2 and Γ+.
The segments Γ− and Γ+ are, respectively, the boundaries of the lower and upper
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crack face. For such a closed contour, J-integral can now be defined in the form of
area-integration by [Li et al. (1985)]:

J =
∫

AJ

(
σij

∂ui

∂x1
− wδ1j

)
∂q

∂xj
dA, (26)

where δ1j is the Kronecker delta and q is now a sufficiently smoothing function
defined on AJ . We will discuss in Sec. 2.4.2 on how q should be defined for our
ES-FEM model.

In order to evaluate the stress intensity factors for mixed modes effectively, the
method of area-path interaction integral [Yau et al. (1980); Shih and Asaro (1985)]
will be used in this paper by calculating the following integration first.

I(1,2) = −
∫

AJ

[
w(1,2)δ1j − σ

(1)
ij

∂u
(2)
i

∂x1
− σ

(2)
ij

∂u
(1)
i

∂x1

]
∂q

∂xj
dA. (27)

The stress intensity factors can be evaluated then as


K
(1)
I =

2
E∗ I(1,Mode I),

K
(1)
II =

2
E∗ I(1,Mode II),

(28)

where E∗ is defined in terms of material parameters E (Young’s modulus) and ν

(Poisson’s ratio) as Eq. (29):

E∗ =




E plane stress,

E

1 − ν2
plane strain.

(29)

2.4.2. Determination of area-path

Because the ES-FEM uses a basic mesh of linear three-node triangular elements, a
simple scheme can be devised to determine the area-path AJ shown in Fig. 5(c).
First, a set of elements having at least one node within a circle of radius rd is
found, and this element set is denoted as Nd. The weighting function q is then
chosen as a piecewise linear function passing through the nodal values at all the
nodes belonging to all the elements in Nd. If a node ni belonging to an element
e ∈ Nd lies outside the circle, then the nodal value of the weighting function is set
to zero: qi = 0; if a node ni lies inside the circle, the weighting function is then
set to unit: qi = 1. Since the elements set N in

d has all the nodes inside the circle
as shown in Fig. 5(c), the weight function will be a constant (unit) within all these
elements in set N in

d . Because the gradient of q is used in Eq. (27) the element set
N in

d will contribute nothing to the interaction integral. The nonzero contribution to
the integral is obtained only for elements set N eff

d with (two) edges intersecting the
circle. Because three-node elements are used in ES-FEM, any circle will naturally
always select a layer of elements that form AJ .
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3. Numerical Examples

In this section, some examples are presented to demonstrate the accuracy and
stability of singular ES-FEM, for linear elastic fracture mechanics problems. All
the problems have been solved using FEM-T3, standard ES-FEM, and Singular
ES-FEM, using the same basic mesh of linear triangular elements. The effect of the
number of S-SDs in the Singular ES-FEM has been also examined in the examples.
In addition, the effects of different values of λ that changes the intermediate node
locations on the edges connecting to the crack-tip node is also investigated in details
using the first example problem.

3.1. Rectangular finite plate with a central crack

under pure mode I

A rectangular finite plate containing a central crack is first analyzed under tension
load at its top edge. This problem is of pure mode I. the structure is depicted
in Fig. 6, and the parameters used are w = 10.0 cm, L = 25.0 cm, a = 4 cm,
and σ = 1N/cm2. The material is isotropic elastic and material constants are
E = 3× 107 N/cm2 and ν = 0.25. The analytical solution of stress intensity factors
for such a structure is given by Tada et al. [2000].

KI = σ
√

πa

[
1 − 0.025

( a

w

)2

− 0.06
( a

w

)4
] (

sec
( πa

2w

))0.5

. (30)

Fig. 6. Homogenous finite plate with a central crack under tension (pure mode I).
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The problem is then solved using FEM-T3, ES-FEM, and the present Singular
ES-FEM. In the singular ES-FEM, we used one SD (SD = 1) and two cases of one
and two S-SDs (S-SD= 1 and S-SD= 2) for the crack-tip elements. In addition, for
the case of using two S-SDs, the effects of the intermediate node position on the
crack-tip edges have been examined by choosing different values of λ. The results
in term of both the strain energy and stress intensity factors at each crack-tip are
illustrated in Figs. 7–9. From these results, it can be seen that:

(1) The strain energy results of the present singular ES-FEM are much more accu-
rate and convergence much faster than the FEM-T3 and standard ES-FEM.

(2) Singular ES-FEM with SD= 1 works very well in this example to evaluate the
stress intensity factors at either of two crack-tip points.

(3) The results related to cases of different λ shows that the place of intermediate
nodes does not significantly affect on the results. As a conclusion, based on our
singular ES-FEM formulation, we do not have to place the intermediate node
at one-quarter edge length as in the quadratic FEM elements.

(4) Figures 8 and 9 show that the value of stress intensity factors and related
numerical error at crack-tips A and B are very close to each other and almost
the same. This expected result confirms that our method works very well for
the domains including more than one crack.

(5) Increasing the number of S-SDs somewhat improve the results, however, the
improvement is not too much in this example especially for the finer meshes.
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Fig. 7. Strain energy results for the finite plate under mode I.
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Fig. 8. Normalized stress intensity factor at point A for the finite plate under mode I.
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Fig. 9. Normalized stress intensity factor at point B for the finite plate under mode I.
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Fig. 10. Infinite plate with a central crack under pure mode II.

3.2. Homogeneous infinite plate with a central crack under pure

mode II

In this example, we study the homogeneous infinite plate with the similar geometry
but under the pure shear mode. This structure has been shown in Fig. 10. The
analytical solution for this plate when its dimensions goes to infinitive is valid and
the stress intensity factor in mode II equals to KII = τ

√
πa, in which τ is the shear

stress and a is half of the crack length. In this example, the plate dimensions has
been fixed as a = 10mm and w = 200mm, and since w/a = 20, the solution for the
infinite plate with a central crack can be employed. The problem has been solved
under pure shear mode using different methods including FEM-T3, ES-FEM, and
Singular ES-FEM. The results in term of strain energy and stress intensity factor
have been tabulated in Tables 1–3 and depicted in Figs. 11 and 12. Similar to the
previous example and regarding to the results tabulated in the tables it can be seen
that the value of stress intensity factor at points A and B is very close to each other.
Therefore, the stress intensity factor behavior has been plotted only for one of the
crack-tip points. Based on the results it can be clearly observed that:

(1) Singular ES-FEM with SD= 1 works very well in this example to evaluate the
strain energy and stress intensity factors at either of two crack-tip points.

(2) Based on Tables 2 and 3 it can be clearly observed that by increasing the mesh
the value of error declines to 0.02% for Singular ES-FEM. It is much more less
in comparison with FEM and standard ES-FEM.

3.3. Double edge crack specimen

The geometry of double edge crack specimen is shown in Fig. 13. The specimen is
subjected to a remoter tensile stress σ at top edge and being fixed at the bottom.
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Table 1. Strain energy for the homogeneous infinite plate with a central crack under
pure shear mode.

360 448 504 588 704 5382

FEM-T3 976.2515 976.2797 976.2868 976.2955 976.3033 976.3471
ES-FEM 976.4103 976.4339 976.4345 976.4363 976.4362 976.4384
Sing ES-FEM 976.5364 976.5639 976.5650 976.5655 976.5660 976.5735

Table 2. KII at point A for the homogeneous infinite plate with a central crack under
pure shear mode.

360 448 504 588 704 5382
(Error %) (Error %) (Error %) (Error %) (Error %) (Error %)

FEM-T3 0.9509 0.9625 0.9649 0.9669 0.9710 0.9880
(4.9083 %) (3.7461 %) (3.5083 %) (3.3135 %) (2.9042 %) (1.2036 %)

ES-FEM 0.9847 0.9879 0.9894 0.9922 0.9933 0.9937
(1.5301 %) (1.2098 %) (1.0580 %) (0.7765 %) (0.6701 %) (0.6287 %)

Sing ES-FEM 0.9888 0.9930 0.9948 0.9970 0.9982 0.9998
(1.1155 %) (0.6987 %) (0.5160 %) (0.2958 %) (0.1824 %) (0.0211 %)

Table 3. KII at point B for the homogeneous infinite plate with a central crack under pure shear
mode.

360 448 504 588 704 5382
(Error %) (Error %) (Error %) (Error %) (Error %) (Error %)

FEM-T3 0.9628 0.9504 0.9677 0.9654 0.9706 0.9872
(3.7221 %) (4.9579 %) (3.2311 %) (3.4580 %) (2.9381 %) (1.2755 %)

ES-FEM 0.9880 0.9847 0.9893 0.9918 0.9928 0.9934
(1.1961 %) (1.5292 %) (1.0716 %) (0.8213 %) (0.7172 %) (0.6598 %)

Sing ES-FEM 0.9931 0.9892 0.9944 0.9965 0.9977 0.9997
(0.6864 %) (1.0808 %) (0.5577 %) (0.3451 %) (0.2295 %) (0.0285 %)

The analytical formula of the stress intensity factor for such a specimen is given by
Tada et al. [2000] as:

KI = σ
√

πa

[
1.122− 0.561

( a

w

)
− 0.205

( a

w

)2

+ 0.471
( a

w

)3

− 0.910
( a

w

)4
]/(

1 − a

w

)0.5

. (31)

In this example, the parameters used are w = 4.0 cm, L = 11.0 cm, a = 1.2 cm,
and σ = 1 N/cm2. The material is isotropic elastic and material constants are
E = 3×107 N/cm2 and ν = 0.25. In this example, the effect of increasing the number
of S-SD is also examined. The results have been tabulated in Tables 4–6 and depicted
in Figs. 14 and 15. Similar to the pervious example, the stress intensity factor behav-
ior has been plotted for one of the crack-tips. Regarding to the results tabulated
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Fig. 11. Strain energy results for the infinite plate under mode II.
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Fig. 12. Normalized stress intensity factor at point A for the infinite plate under mode II.
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Fig. 13. Double edge crack specimen.

Table 4. Strain energy for double edge crack specimen.

336 530 948 1286 1780

FEM-T3 2.8552e-004 2.8756e-004 2.8823e-004 2.8860e-004 2.8880e-004
ES-FEM 2.8862e-004 2.8952e-004 2.8960e-004 2.8975e-004 2.8979e-004
Sing ES-FEM 2.8930e-004 2.9022e-004 2.9028e-004 2.9043e-004 2.9047e-004

(S-SD =1)
Sing ES-FEM 2.8953e-004 2.9046e-004 2.9053e-004 2.9068e-004 2.9072e-004

(S-SD =2)

Table 5. KI at point A for double edge crack specimen.

336 530 948 1286 1780

(Error %) (Error %) (Error %) (Error %) (Error %)

FEM-T3 0.9249 0.9582 0.9691 0.9722 0.9752
(7.5073 %) (4.1825 %) (3.0897 %) (2.7782 %) (2.4750 %)

ES-FEM 0.9725 0.9840 0.9843 0.9848 0.9843
(2.7469 %) (1.5971 %) (1.5716 %) (1.5176 %) (1.5675 %)

Sing ES-FEM 0.9772 0.9890 0.9924 0.9941 0.9985
(S-SD =1) (2.2839 %) (1.1035 %) (0.7596 %) (0.5863 %) (0.1498 %)

Sing ES-FEM- 0.9796 0.9916 0.9933 0.9951 0.9994
(S-SD =2) (2.0376 %) (0.8378 %) (0.6873 %) (0.4854 %) (0.0564 %)
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Table 6. KI at point B for double edge crack specimen.

336 530 948 1286 1780
(Error %) (Error %) (Error %) (Error %) (Error %)

FEM-T3 0.9333 0.9580 0.9715 0.9730 0.9752
(6.6730 %) (4.2013 %) (2.8513 %) (2.7045 %) (2.4825 %)

ES-FEM 0.9797 0.9826 0.9835 0.9830 0.9842
(2.0278 %) (1.7409 %) (1.6539 %) (1.6957 %) (1.5832 %)

Sing ES-FEM 0.9844 0.9875 0.9923 0.9931 0.9982
(S-SD =1) (1.5616 %) (1.2487 %) (0.7601 %) (0.6845 %) (0.1764 %)

Sing ES-FEM- 0.9868 0.9901 0.9929 0.9945 0.0.9992
(S-SD =2) (1.3239 %) (0.9903 %) (0.7096 %) (0.5476 %) (0.0763 %)
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Fig. 14. Strain energy results for the double edge crack specimen.

in the tables it can be seen that the value of stress intensity factor at points A and
B is very close to each other.

From these results it can be seen that:

(1) The results of Singular ES-FEM are more accurate than FEM-T3 and standard
ES-FEM.

(2) It also can be observed that using two S-SDs (S-SD= 2) can yield to the further
improvement in the results including either strain energy and stress intensity
factors.
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Fig. 15. Normalized KI at point A for the double edge crack specimen.

(3) Based on Tables 5 and 6, it is clear that for this example the value of numerical
error for Singular ES-FEM is much less than FEM-T3 and standard ES-FEM.
This value decreases more by choosing two S-SDs (S-SD= 2).

3.4. Homogenous infinite plate with a central inclined crack

under mixed mode

Based on the fact that path independency is the most important feature of the
J-integral theory, the stress intensity factors which are calculated in the same fash-
ion presented in Sec. 2.4 should also be path-independent. It means that using the
different paths or domains around the crack-tip should not impose a considerable
variation in the value of the stress intensity factors. In order to investigate this char-
acteristic for the Singular ES-FEM, an inclined crack under tension load is studied
as an example of the mixed-mode situation. This structure is shown in Fig. 16. In
this example, w = 40mm, a =

√
2 mm, ϕ = π

4 , and σ = 1 MPa. The analytical
solution for such a structure is available as{

KI = σ
√

πa sin2 ϕ,

KII = σ
√

πa sin ϕ cosϕ.
(32)

For this example ϕ is fixed as ϕ = π
4 and therefore we will have


KI

σ
√

πa
= 0.5000,

KI

σ
√

πa
= 0.5000.

(33)



March 31, 2010 9:2 WSPC/0219-8762 196-IJCM 00213

212 G. R. Liu et al.

Fig. 16. The plate with an inclined central crack under tension.

The results of stress intensity factors for this structure has been evaluated using
Singular ES-FEM with one SD (SD= 1) based on different paths around the crack-
tip and outside the crack-tip elements. These results have been tabulated in Tables 7
and 8. Similar to the previous example, it can be clearly observed that Singular ES-
FEM presents stable results for different paths chosen around the crack-tip.

Table 7. Path independency at point A for the specimen with inclined crack
under tension load.

rd = 0.4 rd = 0.6 rd = 0.7 rd = 0.9 rd = 1
(Error %) (Error %) (Error %) (Error %) (Error %)

KI

σ
√

πa
0.4991 0.4997 0.4996 0.5001 0.5002

(0.0867 %) (0.0269 %) (0.0359 %) (0.0127 %) (0.0203 %)
KII

σ
√

πa
0.4962 0.5017 0.5018 0.5060 0.5010

(0.3799 %) (0.1685 %) (0.1804 %) (0.5965 %) (0.1050 %)

Table 8. Path independency at point B for the specimen with inclined crack
under tension load.

rd = 0.4 rd = 0.6 rd = 0.7 rd = 0.9 rd = 1
(Error %) (Error %) (Error %) (Error %) (Error %)

KI

σ
√

πa
0.4985 0.4985 0.4987 0.4981 0.4989

(0.1467 %) (0.1530 %) (0.1276 %) (0.1864 %) (0.1104 %)
KII

σ
√

πa
0.4963 0.5022 0.5022 0.5062 0.5023

(0.3652 %) (0.2236 %) (0.2236 %) (0.6230 %) (0.2316 %)
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4. Conclusion

In this paper, a general singular ES-FEM has been formulated to evaluate the
stress intensity factors for the fracture problems including the domains with more
than one crack-tips and under different cases of Mode I, Mode II, or mixed-Mode
situation. The method uses the base mesh of linear triangular element which can
be generated automatically for complicated geometries. A new five-node triangular
element has been formulated and implemented at crack-tip to simulate the stress
and strain field singularity. Considering the fact that for the linear elastic fracture
mechanics problems, stress intensity factors play the most important role in the
crack propagation, this paper tried to focus on stress intensity factors calculation
based on Singular ES-FEM. The following points may be drawn from the numerical
results.

(1) The singular ES-FEM with one SD (SD = 1) produces converged good results;
however, increasing the number of S-SD can somehow improve the results.

(2) The singular ES-FEM has much more accurate results in term of the strain
energy in comparison with the standard ES-FEM-T3 and FEM-T3.

(3) The singular ES-FEM has much more accurate results in term of the stress
intensity factors in comparison with the standard ES-FEM-T3 and FEM-T3,
and works well with the stress intensity factor calculations based on the interact
integration.

(4) The numerical results of the singular ES-FEM are stable for different area
chosen around the crack-tip and present a very nice “path independency” nature
of the stress intensity factors.
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